Search results

1 – 10 of 10
Article
Publication date: 16 June 2010

M. Grujicic, V. Sellappan, G. Arakere, J.M. Ochterbeck, Norbert Seyr, Andreas Obieglo, Marc Erdmann and Jochen Holzleitner

The purpose of this paper is to propose and analyse computationally a new concept for mechanical interlocking between metal and plastics. The approach utilizes some of the ideas…

Abstract

Purpose

The purpose of this paper is to propose and analyse computationally a new concept for mechanical interlocking between metal and plastics. The approach utilizes some of the ideas used in the spot‐clinching joining process and is appropriately named “clinch‐lock polymer metal hybrid (PMH) technology.”

Design/methodology/approach

A new approach, the so‐called “direct‐adhesion” PMH technology, is recently proposed Grujicic et al. to help meet the needs of automotive original equipment manufacturers and their suppliers for a cost‐effective, robust, reliable PMH technology which can be used for the manufacturing of load‐bearing body‐in‐white (BIW) components and which is compatible with the current BIW manufacturing‐process chain. Within this approach, the necessary level of polymer‐to‐metal mechanical interconnectivity is attained through direct adhesion and mechanical interlocking.

Findings

In an attempt to fully assess the potential of the clinch‐lock approach for providing the required level of metal/polymer mechanical interlocking, a set of finite‐element based sheet‐metal forming, injection molding and structural mechanics analyses is carried out. The results obtained show that stiffness and buckling resistance levels can be attained which are comparable with those observed in the competing injection over‐molding PMH process but with an ∼3 percent lower weight (of the polymer subcomponent) and without the need for holes and for over‐molding of the free edges of the metal stamping.

Originality/value

The paper presents a useful discussion of clinch‐lock joining technology's potential for fabrication of PMH load‐bearing BIW components.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 October 2015

M. Grujicic, R Yavari, S. Ramaswami, J Snipes and R Galgalikar

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated…

Abstract

Purpose

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated computationally using a combined Eulerian-Lagrangian (CEL) finite element analysis (FEA). The emphasis of the computational analysis was placed on the understanding of the inter-material mixing and weld-flaw formation during a dissimilar-material FSW process. The paper aims to discuss these issues.

Design/methodology/approach

The FEA employed is of a two-way thermo-mechanical character (i.e. frictional-sliding/plastic-work dissipation was taken to act as a heat source in the energy conservation equation), while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. Within the analysis, the workpiece and the filler-metal insert are treated as different materials within the Eulerian subdomain, while the tool was treated as a conventional Lagrangian subdomain. The use of the CEL formulation within the workpiece insert helped avoid numerical difficulties associated with excessive Lagrangian element distortion.

Findings

The results obtained revealed that, in order to obtain flaw-free FSW joints with properly mixed filler and base materials, process parameters including the location of the tool relative to the centerline of the weld must be selected judiciously.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to simulate FSW of dissimilar materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 August 2014

M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman and J.S. Montgomery

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its…

Abstract

Purpose

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties (strength, in particular) within the weld.

Design/methodology/approach

The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. A critical assessment is conducted of the basic foundation of the model, including its five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: first, electro-dynamics of the welding-gun; second, radiation/convection controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; third, prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; fourth, the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and fifth, spatial distribution of the as-welded material mechanical properties.

Findings

The predictions of the improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To explain microstructure/property relationships within different portions of the weld, advanced physical-metallurgy concepts and principles are identified, and their governing equations parameterized and applied within a post-processing data-reduction procedure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes and S Ramaswami

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost.

Findings

Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints.

Originality/value

The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 March 2014

M. Grujicic, S. Ramaswami, J.S. Snipes, R. Galgalikar, V. Chenna and R. Yavari

Wind energy is one of the most promising and the fastest growing alternative-energy production technologies, which have been developed in response to stricter environmental…

Abstract

Purpose

Wind energy is one of the most promising and the fastest growing alternative-energy production technologies, which have been developed in response to stricter environmental regulations, the depletion of fossil-fuel reserves, and the world's ever-growing energy needs. This form of alternative energy is projected to provide 20 percent of the US energy needs by 2030. For economic reasons, wind turbines (articulated structures that convert wind energy into electrical energy) are expected to operate, with only regular maintenance, for at least 20 years. However, some key wind turbine components (especially the gearbox) tend to wear down, malfunction and fail in a significantly shorter time, often three to five years after installation, causing an increase in the wind-energy cost and in the cost of ownership of the wind turbine. Clearly, to overcome this problem, a significant increase in long-term gearbox reliability needs to be achieved.

Design/methodology/approach

While purely empirical efforts aimed at identifying shortcomings in the current design of the gearboxes are of critical importance, the present work demonstrates that the use of advanced computational engineering analyses, like the finite-element stress analysis and a post-processing fatigue-life assessment analysis, can also be highly beneficial.

Findings

The results obtained in the present work clearly revealed how a variety of normal operating and extreme wind-loading conditions can influence the service-life of a wind-turbine gearbox in the case when the service-life is controlled by the gear-tooth bending-fatigue.

Originality/value

The present work attempts to make a contribution to the resolution of an important problem related to premature-failure and inferior reliability of wind-turbine gearboxes.

Details

International Journal of Structural Integrity, vol. 5 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 November 2014

M. Grujicic, V. Chenna, R. Galgalikar, J.S. Snipes, S. Ramaswami and R. Yavari

A simple economic analysis has revealed that in order for wind energy to be a viable alternative, wind-turbines (convertors of wind energy into electrical energy) must be able to…

Abstract

Purpose

A simple economic analysis has revealed that in order for wind energy to be a viable alternative, wind-turbines (convertors of wind energy into electrical energy) must be able to operate for at least 20 years, with only regular maintenance. However, wind-turbines built nowadays do not generally possess this level of reliability and durability. Specifically, due to the malfunction and failure of drive-trains/gear-boxes, many wind-turbines require major repairs after only three to five years in service. The paper aims to discuss these issues.

Design/methodology/approach

The subject of the present work is the so-called white etch cracking, one of the key processes responsible for the premature failure of gear-box roller-bearings. To address this problem, a multi-physics computational methodology is developed and used to analyze the problem of wind-turbine gear-box roller-bearing premature-failure. The main components of the proposed methodology include the analyses of: first, hydrogen dissolution and the accompanying grain-boundary embrittlement phenomena; second, hydrogen diffusion from the crack-wake into the adjacent unfractured material; third, the inter-granular fracture processes; and fourth, the kinematic and structural response of the bearing under service-loading conditions.

Findings

The results obtained clearly revealed the operation of the white-etch cracking phenomenon in wind-turbine gear-box roller-bearings and its dependence on the attendant loading and environmental conditions.

Originality/value

The present work attempts to make a contribution to the resolution of an important problem related to premature-failure and inferior reliability of wind-turbine gearboxes.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 February 2024

Doris Ochterbeck, Colleen M. Berryessa and Sarah Forberger

Neuroscientific research on addictions has prompted a paradigm shift from a moral to a medical understanding – with substantial implications for legal professionals’ interactions…

Abstract

Purpose

Neuroscientific research on addictions has prompted a paradigm shift from a moral to a medical understanding – with substantial implications for legal professionals’ interactions with and decision-making surrounding individuals with addiction. This study complements prior work on US defense attorney’s understandings of addiction by investigating two further perspectives: the potential “next generation” of legal professionals in the USA (criminal justice undergraduates) and legal professionals from another system (Germany). This paper aims to assess their views on the brain disease model of addiction, dominance and relevance of this model, the responsibility of affected persons and preferred sources of information.

Design/methodology/approach

Views of 74 US criminal justice undergraduate students and 74 German legal professionals were assessed using Likert scales and open-ended questions in an online survey.

Findings

Neuroscientific research findings on addictions and views that addiction is a brain disease were rated as significantly more relevant by American students to their potential future work than by German legal professionals. However, a majority of both samples agreed that addiction is a brain disease and that those affected are responsible for their condition and actions. Sources of information most frequently used by both groups were publications in legal academic journals.

Practical implications

In the USA, information for legal professionals needs to be expanded and integrated into the education of its “next generation,” while in Germany it needs to be developed and promoted. Legal academic journals appear to play a primary role in the transfer of research on addiction into legal practice.

Originality/value

This study complements prior work on US defense attorney’s understandings of addiction by investigating two further perspectives.

Details

Journal of Criminal Psychology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2009-3829

Keywords

Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami and Chian-Fong Yen

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly…

220

Abstract

Purpose

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly unique microstructure and properties. The purpose of this paper is to carry out combined experimental and numerical investigations of the mechanical properties of materials residing in different weld zones of FSW joints of thick AA2139-T8 plates.

Design/methodology/approach

Within the experimental investigation, the following has been conducted: first, optical-microscopy characterization of the transverse sections of the FSW joints, in order to help identify and delineate weld zones; second, micro hardness field generation over the same transverse section in order to reconfirm the location and the extent of various weld zones; third, extraction of miniature tensile specimens from different weld zones and their experimental testing; and finally, extraction of a larger size tensile specimen spanning transversely the FSW weld and its testing. Within the computational investigation, an effort was made to: first, validate the mechanical properties obtained using the miniature tensile specimens; and second, demonstrate the need for the use of the miniature tensile specimens.

Findings

It is argued that the availability of weld-zone material mechanical properties is critical since: first, these properties are often inferior relative to their base-metal counterparts; second, the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and finally, modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the weld-material mechanical properties.

Originality/value

The importance of determining the mechanical properties of the material in different parts of the weld zone with sufficient accuracy is demonstrated.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 2007

M. Grujicic, C.L. Zhao, S.B. Biggers, J.M. Kennedy and D.R. Morgan

Common Aero Vehicles (CAVs) are relatively small‐size, un‐powered, self‐maneuvering vehicles equipped with a variety of weapons and launched from space. One of the major obstacles…

Abstract

Common Aero Vehicles (CAVs) are relatively small‐size, un‐powered, self‐maneuvering vehicles equipped with a variety of weapons and launched from space. One of the major obstacles hampering a full the realization of the CAV concept is a present lack of lightweight, high‐temperature insulation materials which can be used for construction of the CAV’s thermal protection system (TPS). A computational analysis is utilized in the present work to examine the suitability of a carbon‐based, coal‐derived foam for the TPS applications in the CAVs. Toward that end, a model is developed for the high‐temperature effective thermal conductivity of foam‐like materials. In addition, an insulation sizing procedure is devised to determine the minimum insulation thickness needed for thermal protection of the vehicle structure at different sections of a CAV. It is found that the carbon‐based foam material in question can be considered as a suitable TPS insulation material at the leeward side and at selected portions of the windward side of a CAV (specifically the portions which are further away from the vehicle nose).

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 10